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CHAPTER 1. INTRODUCTION 

Defects , big or small, can cause major disasters. Aircrafts have crashed, oil 

pipelines have ruptured and nuclear reactors have failed because of undetected cracks. 

In order to assess the safety of a part , it is important to establish (without damaging 

it) whether it contains structural defects, and if so, to decide whether it can continue 

to be used in operation. All this needs to be done without damaging the part. 

Non-destructive evaluation (NDE) techniques are used extensively to accomplish this 

inspection [1]. 

The aim of NDE is not to reject a product having a defect. This would imply 

that finding smaller flaws would lead to rejecting more parts. On the contrary, the 

aim of NDE is to characterize flaws and to evaluate their severity. Characterization 

of flaws implies determining their size, shape, orientation, etc. By characterizing the 

flaws, it is possible to quantify the safe limits for operation of the specimen being 

tested. 

Many nondestructive (NDT) methods have reached the stage of development 

where they can be used by a semi-skilled operator following detailed procedural in­

structions, with safeguards built into the system. However, given the working con­

ditions and the tedious nature of evaluation, the accuracy of operator interpretation 

can definitely be improved by enhancing the signals using signal and image processing 
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techniques. With rapid advances made in the field of Very Large Scale Integration 

(VLSI) technology, it is not inconceivable to have more sophisticated equipment to 

pre-process the large volume of data generated in real-time. This increases both the 

speed and the accuracy of evaluation of the operator, thus reducing inspection costs. 

During the last few years, the potential economic pay-off of NDE has been recognized. 

As a result there has been a tremendous emphasis on research towards improving all 

aspects of nondestructive testing. A variety of NDE techniques have been developed 

over the years to cater to a number of application problems. A brief summary of 

some of these methods is given below. 

NDE Techniques 

Generally, defects are characterized into three main groups. The groups are: 

1. Inherent defects (resulting from the manufacture of the raw material). 

2. Fabrication defects (resulting from the conversion of the raw material to a 

finished part). 

3. Service induced defects (generated during the operation of a part) [2]. 

NDT techniques aim at detecting and characterizing all the above classes of defects. 

Some of the most commonly employed nondestructive techniques are ultrasonic, eddy 

current, magnetostatic, X-ray radiography and acoustic emission. 

The ultrasonic testing method involves inducing high frequency (greater than 

20 KHz) pulses into the specimen under test, and analyzing the reflected or scat­

tered energy for defect characterization. Eddy current testing involves the interac­

tion between an induced eddy current electromagnetic field and the test object. The 
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corresponding change in the impedance of the probe coil constitutes the eddy cur­

rent signal, which contains information related to the condition of the specimen. In 

magnetostatic NDE, the specimen, which is ferromagnetic, is magnetized by suitable 

methods, and flaws at the surface or subsurface distort the magnetic field , causing 

local flux leakage fields. In X-ray radiography, X-rays are passed through the test 

specimen, and defects having a different density compared to the surrounding matter 

are revealed by a localized difference in the blackness of the film image. In acous­

tic emission NDE, the sound emitted by solids subjected to a high level of stress is 

analyzed for flaw characterization [3] [4]. 

Each of these NDT techniques have a wide range of applications and it is not 

easy to compare the overall performance of one NDT technique over others. 

Problem Statement 

The problem addressed in this thesis is one module of the overall system to 

automate flaw detection, location and classification in Boiling Water Reactors (BWR) 

tubings. Stainless steel pipes of thickness 0.69 inches, and an outer diameter of 

12 inches are inspected for cracks using ultrasonic nondestructive testing methods. 

Cracks in these pipes, mainly develop close to the weld joining two pipes. Specifically, 

the cracks develop in the heat affected zone (HAZ) of the pipes. The heat affected 

zone extends axially up to 0.5 inches from the weld for thin pipes (thickness less than 

0.5 inches) and upto 1.25 inches for thick pipes (thickness from 1.25 inches to 1.5 

inches). A typical weld geometry is shown in Figure 1.1. The counter bore represents 

the thinning of the pipes to ensure that pipes being welded are of the same thickness. 

Most of the cracks are due to mechanical fatigue, thermal fatigue, or intergranu-
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Figure 1.1: Typical nuclear pipe and weld geometry 

lar stress corrosion. Each of these have a characteristic signature as far as the reflec-

tion and scattering of the induced signal is concerned. The pipes are tested for cracks 

using ultrasonic NDE techniques. A typical setup comprises of an operator in com-

plete radiation-proof gear getting into the reactor, scanning the pipes in an attempt 

to characterize the reflected signal as being from counterbore, root-weld or crack. 

Due to the high noise environment of the setup, it is quite probable, even for a highly 

skilled operator, to misclassify the reflected signal. This may lead t~ catastrophic 

results. It is, therefore, necessary for some preprocessing to be performed before the 

operator interprets the signal. Synthetic aperture focusing technique (SAFT) is one 

such widely used method to enhance the signal to noise ratio (SNR) of ultrasonic 

and radar signals. Most of the research uptil now has concentrated on performing 
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SAFT on data collected using the normal mode of incidence of the ultrasonic beam. 

However, as will be discussed in later chapters, nuclear NDE uses the angle-beam 

mode of inspection of test specimens. There has not been much research done in this 

field. In this research, a SAFT algorithm has been developed for preprocessing the 

ultrasonic data collected using the angle-beam technique. The algorithm has been 

tested with ultrasonic signals from the industry, and initial results look promising, 

thus enhancing detectability of defects. Algorithms related to flaw location have 

also been developed in this research. These algorithms are valuable in locating and 

characterising the defects , and other features of the specimen being evaluated. 

The thesis is organized as follows. Chapter 2 provides information on the vari­

ous techniques and modes of ultrasonic NDE data collection and representation. A 

discussion on the principles and formulation of normal SAFT is given in chapter 3. 

Chapter 4 describes angle-beam SAFT in detail and presents the algorithm used in 

the research. A discussion of the results along with conclusions and areas for further 

investigation are presented in Chapter 5. 
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CHAPTER 2. ULTRASONIC NONDESTRUCTIVE EVALUATION 

Ultrasound, as used in nondestructive testing, refers to sound waves slightly 

above the audible range of the human ear, i.e. greater than 20 KHz. For years, 

ultrasound has been used to cover all aspects of NDT research, ranging from the 

detection of internal crack in materials to small sub-surface defects. These methods 

have played a major role in the quality inspection of partially manufactured compo­

nents, as well as nondestructive testing of parts being used. 

There are several modes of ultrasound propagation. The generation and propagation 

of ultrasonic waves is considered in the next section [5]. 

Generation and Propagation of Ultrasonic Waves 

Crystals of certain minerals and salts, when subjected to alternating electric 

charges, expand and contract under the influence of these charges. Conversely, these 

materials when subject to alternate compression and tension generate alternating 

charges. This is the piezo electric effect. A large number of piezo-electric materials, 

including man-made ceramics and polymers, have been used in the construction of 

modern ultrasound transducers. However, the original material used was, and still 

is, natural quartz. When a piezoelectric material is subject to an alternating voltage 

across its thickness , vibrations, caused by contraction and expansion of the disc, 
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gives rise to a compressional wave normal to the disc 's surface. When the transducer 

crystal vibrates at it 's natural frequency, wave generation is most efficient. Piezo 

electric materials can be used for generating as well as detecting sound waves [5]. 

Ultrasonic waves are elastic waves, which can be transmitted through any medium. 

However, a required criteria for the propagation of ultrasonic waves is that the 

medium should be continuous for the energy to propagate freely. Any discontinuity, 

such as internal voids, delaminations or cracks, will interfere with the transmission 

of ultrasonic signals. 

UT waves propagate in two dominant modes, namely longitudinal and shear. In 

fluid medium, ultrasonic waves propagate in the longitudinal or compressional mode, 

wherein the wave propagates in the direction of particle vibration [6]. However, in 

solids, a shear wave component may arise, wherein the wave displacement is normal 

to the direction of propagation. Elastic surface waves, called Rayleigh waves can also 

occur. 

The longitudinal mode of wave transmission is probably the most widely used in 

ultrasonic testing. In most common materials, this wave has a short wave length in 

comparison with the cross sectional area of the transducer. Consequently, the wave 

energy is focused into a sharp beam with a small divergence. The main use of longitu­

dinal waves is for the detection and location of cracks that present a reasonably large 

frontal area to the test surface. In fluids the longitudinal velocity 131 of ultrasound 

waves is given by 

(2.1) 

where la is the adiabatic volume elasticity, and pis the density of the fluid. However, 

for solids the expression for the longitudinal velocity is not as trivial. The longitudinal 
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velocity ,,J 1 in the case of solids is given by 

c(l - K) 
(2.2) 

where E is the Young's modulus of elasticity, K is the Poisson's ratio and p is the 

density of the solid. 

Shear waves have lower velocities than longitudinal waves. As a result, shear 

waves have shorter wavelengths than longitudinal waves of the same frequency. This 

shorter wavelength makes shear waves more sensitive to smaller defects, and conse-

quently they are more easily scattered within the specimen. Shear beams are mainly 

used for inspection with the angle-beam technique. The shear wave velocity ,,Js of 

propagation of ultrasound in solids is is given by 

(2.3) 

where ( is the modulus of rigidity of the material. 

As sound propagates through a material it 1s attenuated with the distance of 

propagation z [7], according to the equation 

(2.4) 

where I is the intensity at depth z and 10 is the intensity at the surface of the material 

(z = 0). The attenuation coefficient, a, depends on the frequency, and increases with 

an increase in the frequency. However, the frequency f, along with the velocity 

of sound, 73, in a specific medium, determine the wavelength, A, of the ultrasonic 

pulse. Note that the wavelength must be kept as short as possible to improve axial 
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resolution [8]. These three variables are related by the following equation 

(2.5) 

It can be verified that higher the frequency, lower the wavelength, the better the 

resolution. The trade-off is the high attenuation at higher frequencies. 

Comparison of Ultrasonic NDT with other Techniques 

Ultrasound inspection has several distinct advantages over other NDT meth-

ods [2]. Among the most significant are: 

1. The inspection requires only one surface for inspection. 

2. The ability of ultrasonic test waves to penetrate thick specimen. 

3. Its ability to locate the exact position of a flaw. 

4. The capability to detect minute flaws under appropriate conditions. 

5. The compatibility of ultrasonic inspection for automated processing. 

Ultrasonics, as do other NDT methods, has disadvantages , which require con-

sideration. Among these are: 

1. The test object must be able to conduct sound without excessive losses. 

2. Discontinuities just beneath the surface (dead zone) may not be detectable. 

3. Need for qualified technical personnel to operate and interpret the information 

resulting from an ultrasonic inspection. 
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4. The geometry of the test piece may make ultrasonic inspection difficult or 

impossible. 

5. The necessity of a good contact for the sound to be transmitted into and re­

turned from the test piece. 

6. The relatively small area of inspection due to the small area of the search 

unit. This limitation makes the inspection of large surfaces dependent on using 

multiple transducers and complicated mechanical scanning equipment [2]. 

U ltrasonic Testing Techniques 

There are two methods for carrying out a UT inspection: 

1. Pulse-echo 

2. Pitch-catch 

Both these methods rely upon the fact that inhomogeneities produce variations in 

impedance of the surrounding media [4]. Each of these is detailed in the following 

subsections. 

Pitch-catch technique 

In the pitch-catch or through-transmission mode of UT testing, two transducers 

are applied on either side of the specimen under test as shown in Figure 2.1. This 

in turn requires both surfaces of the test piece to be accessible, which may not be 

possible in some cases. 
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Figure 2.1: Normal pitch-catch technique of ultrasonic testing 

One transducer injects (pitches) a sound pulse into the test piece, while the other 

transducer receives (catches) the transmitted sound. Any inhomogeneity in the path 

of the beam causes some of the ultrasonic energy to be absorbed or reflected, and the 

evidence of the existence of the defect is shown as a reduction in the total amount of 

the energy received at the receiving transducer, remote from the source of the energy. 

In addition to flaw detection, transmission methods are used to determine grain size, 

porosity, physical properties and wall thickness measurement. 

A major difficulty encountered with the pitch-catch technique, is that m case 

of presence of bonding of materials in the test specimen, the acoustic transmission 

properties of the materials vary [ 4]. The pulse-echo method is better suited for such 
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applications, and is discussed in the following subsection. 

Pulse-echo technique 

The pulse-echo technique is the most popular UT testing method and is used 

most often in industrial ultrasonic flaw detection systems. In the pulse-echo system, 

an electric pulse is applied to the transmitter probe, which produces a short ultra­

sonic pulse which is propagated into the specimen through a couplant layer. The 

same transducer is used as the receiver, since piezo-electric transducer generates me­

chanical vibrations under electrical stimuli and vice-versa. The transmitted beam is 

reflected from the opposite surface or the defect back to the transducer as shown in 

the Figure 2.2. 

The pulse-echo technique depends upon the detection of the energy reflected back 

to its source. For bonded structure, pulse-echo is a better option, since it is more 

direct than the pitch-catch technique, as the actual reflection from the area under 

examination is detected and evaluated. Unlike pitch-catch, pulse-echo technique 

requires access to only one surface of the test specimen, which is an added benefit. 

Other techniques 

Besides these two main techniques, other methods used for ultrasonic testing are 

resonance, acoustic imaging and frequency modulation [2]. 

The resonance technique utilizes the ability of a body to resonate due to ar­

tificially induced resonating frequencies. After the "harmonic frequency" has been 

determined for the reference material, test pieces are subjected to the same frequency 

or frequency spectrum. The lack of induced vibrations indicates a difference between 
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Figure 2.2: Normal pulse-echo technique of ultrasonic testing 

the standard and the test piece. Generally, this method of ult rasonic testing is limited 

to thin sections. 

The acoustical imaging technique uses the visual indication of the sound energy 

transmitted through a test piece. The methods of visualization include special elec-

tronic tubes, temperature sensitive compounds, lasers, and television apparatus to 

"visualize" the test piece. 

The frequency modulation method of testing employs one transducer whose fre-

quency is continually varying. Sound is constantly sent and received by the trans-

ducer. The ability of the transducer to receive a signal while it is emitting a signal is 

due to the differences in frequencies of the signal received and the signal being sent. 
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M odes of U ltrasonic Testing 

An additional parameter that is usually varied in ultrasonic testing using either 

the pulse-echo or pitch-catch mode, is the angle of incidence of the ultrasonic beam 

into the test specimen. Based on this parameter, there are two modes of opera­

tion with each of the two techniques (pulse-echo and pitch-catch), namely normal 

incidence and angle-beam incidence. 

Normal incidence 

In normal incidence ultrasonic testing, the ultrasonic beam is induced normal to 

the major axis of the specimen being tested. It is most effective in flaw character­

ization where the flaws are mainly parallel to the axis of the unit under test. The 

discussion in the earlier sections has implicitly assumed a normal incidence mode. 

Figures 2.1 and 2.2 display normal incidence pitch-catch and pulse-echo modes of 

testing respectively. Note that normal incidence testing uses longitudinal waves as 

the sound waves used for flaw characterization. 

Angle beam incidence 

In order for a reflector to be displayed, t he axis of the sound beam must be per­

·pendicular to the reflector. Normal beam transducers are effective only for detecting 

flaws that are parallel to the test surface. vVhen the largest face of the discontinuity 

is expected to be at orientations other than parallel to the surface, angle-beam mode 

is used for flaw detection. 

In case of the nuclear pipe weld geometry illustrated in the Figure 1.1 , as stated 

earlier, most of the cracks occur in the vicinity of the weld material, i.e. in the 
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heat affected zone. A characteristic of the weld material is the granular structure, 

resulting in scattering of the UT energy. Hence, it is not possible for a transducer to 

be placed on the weld crown to detect cracks underneath using normally incidence 

waves. Hence the technique used for ultrasonic testing of welded pipes is angle-beam 

pulse-echo, which is a standard technique used in the industry. 

Angle beams are produced in the test material using the principle of refraction. 

Refraction is the bending of a sound beam when it passes through an interface be­

tween materials of different acoustic velocity. The relationship between the angle of 

incidence and the angle of refraction is given by Snell's law, stated below 

SinBl 
SinB2 

t91 

t92 
(2.6) 

where Bl is the angle of incidence, 82 is the angle of refraction, t91 is the velocity of 

sound in the incident medium an t92 is the velocity of sound in the refracted medium. 

The angle of refraction depends upon, both the incident angle and the ratio of acoustic 

velocities through which the incident and refracted beams are travelling. As the angle 

of the incident beam increases, the angle of the refracted beam also increases. At a 

critical angle, the refracted beams are refracted go0 , and are in effect, fully reflected 

within the first material. This is called as the first critical angle, and only the shear 

component of the refracted beam is transmitted to the second material. The second 

critical angle is the incident angle that causes the refracted shear beam to be refracted 

goo. 

One of the most commonly used technique, for angle beam generation is the use 

nf a suitable angle wedge, to launch the beam into the specimen, at the required 

angle. Typical angles for angle-beam incidence is the 30° - 60° range. 

Figure 2.3 shows angle-beam pitch-catch mode while Figure 2.4 shows angle-
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beam pulse-echo mode of ultrasonic testing. 

Ultrasonic Imaging 

The basic concepts underlying the imaging techniques using ultrasound are dis-

cussed in this section. The images produced by ultrasonic waves represent the internal 

interaction with the mechanical properties of defects and other features in material, 

and hence, serve as a powerful tool in modern NDT research [5]. This section is 

intended to cover some of the imaging methodologies involved in the application of 

defect characterization. 
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Figure 2.3: Angle-beam pitch-catch technique of ultrasonic testing 
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Figure 2.4: Angle-beam pulse-echo technique of ultrasonic testing 

A-Scan 

There are several ways in which received signals can be displayed in order to 

extract the necessary information describing any particular medium, during a typical 

ultrasonic test. 

Ideally the display signal represents the reflectivity of the work piece, as a function 

of time, where time is a measure of the depth into the specimen [9]. This display of 

the reflectivity as a function of time is most commonly used and is referred to as the 

A-scan signal. 

A typical A-scan of a stainless steel pipe being scanned, using the angle-beam, 

pulse-echo technique is shown in Figure 2.5. The largest pulse at the left-hand side 
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corresponds to the front wall echo of the sample and the successive blips correspond 

to the echoes emanating from defects. The amplitude of these echoes is generally 

proportional to the size of the reflecting surface, but is also affected by the attenuation 

effects introduced by both the traveled distance and the inherent composition of the 

material itself. The A-scan is quite often used to determine the location of the 

reflector, using the time of flight (TOF), and the velocity of sound in the medium. 

For instance, consider the flaw in the sample whose A-scan is displayed in Fig­

ure 2.5. The A-scan has been obtained using angle-beam pulse-echo technology in 

a stainless steel pipe. The angle of incidence B of the beam is 43° and the velocity 

11 of sound in stainless steel is 0.11 inches/ µsecond. The corresponding geometry is 

shown in the Figure 2.6. In Figure 2.5, the x-axis represents the time of flight, and 

the y-axis represents the amplitude of the reflected signal. The time of flight (TOF) 

corresponding to the maximium amplitude in the reflected signal is 29 µs. 

The depth d of the flaw from the scanning surface can be calculated using 

d = TOFv cos B (2.7) 

For the given A-scan this value comes to 2.33 inches below the top surface which 

is indeed the location of the flaw 

B-Scan 

The B-scan takes the same signals received in the A-scans and presents them in 

a different pattern. It displays the reflectivity of a two dimensional slice through a 

portion of the structure [10]. 

This format enables the recording of a defect location within a material. The 
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CHAPTER 3. SAFT 

Ultrasonic testing technique is used extensively because of its ability to pene­

trate thick specimen, to locate the exact location of a flaw, and to detect minute 

flaws under appropriate conditions. However, there is excessive noise in the reflected 

signals from grain boundaries and discontinuities in the geometry. Many signal pro­

cessing techniques have been developed over the years for enhancing the signal to 

noise ratio of UT signals. This chapter describes the synthetic aperture focusing 

technique (SAFT), which is used extensively in radar and ultrasonic NDE for image 

enhancement. 

Synthetic-aperture Fundamentals 

Synthetic-aperture focusing refers to a process in which the focal properties of 

a large aperture focused transducer are simulated, by a series of measurement made 

using a small aperture transducer scanning over a large area. Synthetic-aperture 

imaging can realize the theoretical resolution potential of ultrasonic waves, improve 

the signal to noise ratio of the image, and take into account such complex material 

interactions as irregular refractive interfaces and the complex angular scattering of 

ultrasonic waves by a defect [11]. The synthetic-aperture method accomplishes these 

tasks by extensive processing of the data from an ultrasonic transducer, in order to 
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Figure 2.6: Geometry for the flaw depth calculation 

abundantly, due to the intrinsic nature of the SAFT algorithm to work on a collection 

of A-scans at a time. 

C-Scan 

The C-scan presentation is a plan view of the part under test, and a flaw is 

indicated in a manner similar to an X-ray of the specimen. In a C-scan, corresponding 

to a time slice of a region, the image pixel intensity is obtained by observing the peaks 

in t he time slice of the scanned A-scans. The method of raster scanning of a sample 

is illustrated in Figure 2.9. A typical C-scan of the same pipe, whose A-scan and 

B-scan are illustrated in Figure 2.5 and 2.8 respectively, is illustrated in Figure 2.10. 



www.manaraa.com

I 

I 

I 

I 

21 

A-SCANS 

' ' ' 

I 

' I 

I' 

I ' 

I ' 

' 

' 
' 

0 \ 

Echo From Defect 

Transducer 

' Defect \ 
' 

Figure 2.7: B-scan imaging system 

Accurate flaw depth cannot be determined from the C-scan presentation, although 

the flaw sizing in the two dimension can be observed. 

Data Storage Issues 

An important issue relevant to NDE in general and UT NDE in particular, is 

the storage and processing of huge amounts of data. Currently, most of the data is 

digitized and stored on computer-supported storage devices. These are mainly in t he 
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Figure 2.8: B-scan 

form of :floppy disks, hard drives and tape drives. A typical setup in which a 10" by 

3" region of a pipe is scanned using a 2 MHz transducer, and then sampled at 25 

mega-samples/second may lead to data files , as large as 100 Mbytes each. This slows 

down the entire process of performing the subsequent signal processing on the data, 

and hence it would be beneficial to the industry if real-time techniques are developed 

using dedicated hardware resources for performing the signal processing in hardware, 

instead of software. 
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Figure 2.9: Raster scanning of the test specimen 
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Figure 2.10: C-scan 
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CHAPTER 3. SAFT 

Ultrasonic testing technique is used extensively because of its ability to pene­

trate thick specimen, to locate the exact location of a flaw, and to detect minute 

flaws under appropriate conditions. However, there is excessive noise in the reflected 

signals from grain boundaries and discontinuities in the geometry. Many signal pro­

cessing techniques have been developed over the years for enhancing the signal to 

noise ratio of UT signals. This chapter describes the synthetic aperture focusing 

technique (SAFT), which is used extensively in radar and ultrasonic NDE for image 

enhancement. 

Synthetic-aperture Fundamentals 

Synthetic-aperture focusing refers to a process in which the focal properties of 

a large aperture focused transducer are simulated, by a series of measurement made 

using a small aperture transducer scanning over a large area. Synthetic-aperture 

imaging can realize the theoretical resolution potential of ultrasonic waves, improve 

the signal to noise ratio of the image, and take into account such complex material 

interactions as irregular refractive interfaces and the complex angular scattering of 

ultrasonic waves by a defect [11]. The synthetic-aperture method accomplishes these 

tasks by extensive processing of the data from an ultrasonic transducer, in order to 
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encode the resulting image information in such a manner, that the necessary human 

interpretation can be done faster and more easily. 

Ultrasonic images can contain, and effectively convey, an extremely large amount 

of information. It is widely accepted among researchers that the ultrasonic pulse re­

turned from a test sample contains much more information about the interaction 

between the ultrasound and the material, than is commonly extracted from con­

ventional displays. The more adept practitioners of the ultrasonic art can either 

consciously or unconsciously make use of this wealth of information. The presence of 

such adept operators is encouraging to those researches attempting to extract more 

information from the ultrasonic signal, as it implies the existence of the data they 

desire, but it is discouraging to those managers wishing to employ ultrasonic testing 

on a routine basis, as it promises inconsistent results over time and with different 

personnels. SAFT is able to enhance the images, so that it is possible for many more 

people to reliably interpret the ultrasonic signals [11]. 

The synthetic-aperture technique utilizes the information in the ultrasonic data 

to produce high quality images. The SAFT process presents the available data in 

an image format that is much easier to interpret . The concept of synthetic-aperture 

imaging is borrowed from radar (microwave) imaging techniques of the same name. 

While there are significant differences between the ultrasonic and the microwave 

implementation, there is a commonality in concepts and motivation, since the wave 

physics of radar antenna and ultrasonic transducer is quite similar. The designers of 

both, ultrasonic transducer and air borne radars , realized that there were practical 

limits to their ability to fabricate the large antenna or transducers required to form 

high resolution images. The solution in both fields is to move a small transducer 
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in such a manner that the collected data can be later processed, to simulate the 

desired large transducer. This processing, in effect, synthesizes the physical processes 

occurring in a large, but unobtainable, aperture transducer and thus is referred to as 

synthetic-aperture imaging 

In both, ultrasonic and radar, the data are focussed, not by some physical mech­

anism employed during data acquisition, such as a curved transducer, but by sub­

sequent data processing. Since this data processing is done in software, it offers 

considerable advantages in terms of fiexibilty and evaluation, as against varying the 

focii of the transducers physically to image different parts. 

Both ultrasound and radar synthetic-aperture techniques explicitly make use of 

both the amplitude and the phase information contained in their respective signals. 

Synthetic-aperture ultrasonic images are formed from RF wave forms, and the ultra­

sonic phase information manifested in the processed image through the mechanism of 

constructive and destructive interference, plays an important role, in the subjective 

improvement of the ultrasonic image [11 J. 

Quantitative Interpretation of SAFT 

Digital ultrasonic imaging can be viewed as collection of ultrasonic data followed 

by processing of the data by an algorithm which represents the ultrasonic scattering 

information in an image. This section presents the theoretical development of the 

ultrasonic defect characterization and the resulting SAFT processing. 

Quantitative interpretation of ultrasonic images requires careful investigation 

and understanding of the inverse scattering scheme under consideration [12]. The 
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increasingly difficult. One might wish to recover information by variation of the 

transmitting transducer, Ro , so that information from all possible points is made 

available to the receiving transducer. 

Variation of R""'a, however does not extract all the information available, and 

it would definitely be better if the receiving transducer, R, could be synthetically 

increased, using the variations of R""'a. Synthetic aperture focusing technique is a 

highly successful imaging scheme, which is based on the observation that there is a 

scattering of amplitude travel-time wavefronts from the defects [13] [14]. The goal 

of SAFT is to back-propagate these wavefronts to the scattering defect where they 

came from. This is achieved implying the following assumptions: 

1. The wavefronts are essentially treated as scalar wavefields; hence <fi becomes 

-<Pi and <Ps becomes <Ps· 

2. The incident wavefield is supposed to emanate from a point source located at 

Ra. 

3. The defect is decomposed into single non-interacting scatterers , which act as 

point sources after illumination with the incident wavefield. 

4. The incident pulse is assumed to be 'nearly' infinitely broad-band, i.e. its time 

structure is represented by F(t) , where F(t) denotes a very sharp nearly 8-like 

impulse. 

In the following sub-section we describe briefly how these assumptions lead to 

the formulation of the imaging SAFT algorithms. 
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important parameters of an ultrasonic scattering experiment are the mode of oper-

ation, be it either pulse-echo or pitch-catch, as well as the bandwidth of the trans­

mitted pulse. For imaging purposes, the scattered wavefield has to be observed at a 

considerable number of spatial points within a synthetic aperture. 

Let us denote the the position of the transmitting transducer by the spatial 

vector R~ and that of the receiving transducer by R. Let us call the incident wave 

field ii and the observable scattered field as</;~. Now</;~ is a function of (<h, 1(R'), 

R~, R, t) where t is the time and 1( R') is a description of the geometry of the material 

defect, which is defined as follows 

1(R') 1 R' inside the defect (3.1) 

-0 R' outside the defect 

The following relations have been developed assuming that the defect resides in a 

linear, isotropic and homogeneous material. Now, assuming that ii is a short broad 

band pulse, then data collection implies the observation and digital storage of ¢;~ as 

a function of the receiving transducer R and the time t [12]. Consequently, an RF 

data field is obtained, which supplies us with information to be exploited for imaging 

purposes. 

It is intuitively clear that confining the receiving transducer R to a spatially 

limited region and restricting the frequency bandwidth of the incident pulse results 

in a deterioration of the image quality, depending upon the complexity of the defect 

geometry 1(R'). Stated in simple terms, this means that we would like the receiving 

transducer (aperture) to be as large as possible. However, because of the manufac­

turing limitations on the size of the transducer, it is not feasible to increase the size 

beyond a certain limit. Therefore, quantitative nondestructive evaluation becomes 
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R' v 

Figure 3.1: Scattering object and measuring surface 

The 'inversion' of the Equation 3.6, i.e. the determination of 1(R') through the 

knowledge of <l>s( R , t) can be achieved, recognizing the fact that every single point 

scattered, for example Rs, contributes linearly to the scattered field [12] . 

(3.7) 

where R is varied along the measurement surface SM by some appropriate procedure. 

Due to the sharpness of the impulse F(t), <P~·(R, t) is significantly non-zero only 

for times 

(3.8) 

Intuitively, t s(R) corresponds to the time when the incident wavefront from Ro 
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Time domain back-propagation of wavefronts: SAFT 

Figure 3.1 gives a geometrical illust ration of the scattering objects and the mea-

surement surface. Suppose the transmitting transducer is modeled as a scalar point 

source Ro on a measurement surface SM,transmitting the impulse F(t) . The incident 

field at the point R' is then given by 

F(t _ IR'-Rol) 

ef>i(Ro, R' ,t) = IR'-Rol 

where c is the wave velocity in the medium. 

(3.2) 

The material inhomogeneity represented by the defect, and its illumination by 

the incident field, gives rise to an induced source ¢>B(Ro, t) which is responsible for 

the scattered field . The entire defect volume V enclosed by 1(R' ) can be represented 

by the scattered field equation 

,;., (Rt)= J { J </>B(R', t - ~) d3 R' 
'f's ' J v IR' - RI (3.3) 

Now as per the third assumption, ¢>B is modeled as a superposition of indepen-

dent point sources, hence 

¢>B(R', t) = 1(R' )</>i(Ro, R' , t) (3.4) 

Therefore the scattered field becomes 

,;., (R t ) = J J oo J 1(R' )¢;i (Ro, R', t - ~) d3 R' 
'f's ' - oo IR' - RI (3.5) 

Using [3.2] for </>i, 

_ J J oo J i (R' )F (t _ I R'~RI _ IR'~Rol ) 3 / 

<l>s (R, t ) - - oo IR' - R\\R' - Ro \ d R (3.6) 
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reaches Rs and then to R. 

A reconstruction of the defect geometry point Rs, given by 1(Rs) can therefore 

be defined by integrating ¢~· ( R, t) along the measurement surface SM, with respect 

to R, for exactly the points defined by Equation 3.8. All contributions of the point 

scatterer are summed up. It is intuitively clear that the point R' =/= Rs receives a 

much smaller amplitude from ts(R) because the curve, 

t'(R') = IR' - Roi+ IR' - RI 
c c 

(3.9) 

has only one point in common, namely (R' =Rs), with equation 3.8. 

Accounting for every point scatterer within 1(R'), the defect can be recon-

structed as 

1(R') = j fsM ef>s(R, t'(R'))IR' - RollR' - RI dD (3.10) 

The integration is with respect to the surface elements on SM. 

Qualitative Analysis of SAFT 

As has been stated in earlier sections, SAFT refers to a process in which the 

focal properties of a large-aperture focused transducer are synthesized by a series of 

measurements, made using a small-aperture transducer, that scans a large area [15]. 

In other words, SAFT is the process of simulating a focused transducer. 

SAFT has several advantages over physical focusing techniques. SAFT has a 

great deal of flexibility in data collection and image formation [16]. If a test object 

of irregular size and shape has to be inspected, the data can be processed in a way 

that minimizes the error caused by refraction. To make a similar correction with a 
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physical focus system would require a transducer with different focal properties to be 

designed for every different part to be inspected [16]. 

In case of the nuclear pipe UT inspection technique, a small contact transducer 

is positioned on the test specimen. It simulates a "point" transmitter-receiver, and 

a broad divergent ultrasonic beam is launched into the object. As the transducer is 

scanned over the surface of the object, a series of amplitude v /s time A-scans are 

recorded for each position of the transducer. Every reflector produces a collection 

of echoes in the A-scan records. The locus of each elementary reflector produces a 

characteristic hyperbolic curve, in a set of linear positions, as shown in Figure 3.2. 

The apex and curvature of the hyperbola are completely determined by the depth 

o f the reflector within the test object. This deterministic relationship between the 

echo location in the recorded A-scans and the location of the reflectors wit hin the 

test object makes it possible to generate a processed image from the new data by the 

coherent summation process [16]. 

If the scanning and surface geometries are known, it is possible to accurately 

predict the shape of the locus of echoes for each point within the test object. The 

process of coherent summation involves shifting the raw A-scans by the predicted 

time-delay and summing of the shifted echo data. The time-compensated A-scans 

are then averaged over a numLer of positions, which is the aperture size. The aperture 

of the synthesized transducer is the number of A-scans that are coherently summed 

in SAFT. For all processing purposes, the aperture can be treated as a window into 

the collection of A-scans. The time-shifting is done with respect to the A-scan which 

is at the center of the aperture ( COA) . Following the averaging, the resultant vector 

is placed at the center of the chosen aperture. 
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Figure 3.2: Hyperbolic reflections from the same reflector in different A-scans 

If the point being imaged corresponds to a reflection from a defect, or in other 

words, correlates with a locus of A-scan echoes, then all of the A-scans will add 

in phase during the process of spatial averaging to produce a well-defined signal. 

This is illustrated in Figure 3.3. However, if the point being imaged, corresponds 

to noise, or in other words does not correlate with a locus of A-scan echoes, then 

destructive interference of the A-scans will take place, and the spatial average will be 

nearly zero. Figure 3.4 illustrates this destructive interference. Thus, there is both 

an improvement in signal level and a reduction on noise level producing an image 

with a high signal to noise ratio. It should be noted that the SAFT procedure is 

performed at a specific depth site in the specimen under test. 
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Figure 3.3: Constructive interference during SAFT 
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Figure 3.4: Destructive interference during SAFT 
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CHAPTER 4. ANGLE BEAM SAFT 

Angle Beam Theory 

In order for a reflector to be displayed, the axis of the sound beam must be 

perpendicular to the reflector. Straight beam transducers are effective only for reflec­

tors that are parallel to the test surface. When the largest face of the discontinuity 

is expected to be at an orientation, other than parallel to the surface, angle beam 

transducers are used to aim the axis of the beam perpendicular to the discontinuities. 

There are different ways of introducing angle beams into the test material, de­

pending on the coupling technique used. In order for the angle beams to be produced 

in the test material, the transducer's beam axis must be aimed towards the test sur­

face at an angle. Contact testing employs angle wedges, immersion testing permits 

continuously variable angulation of the transducer by means of an adjustable manip­

ulator assembly. 

Angle beams are produced in the test material using the principles of refraction. 

Refraction is the bending of a sound beam when it passes through an interface be­

tween materials of different acoustic velocity. The transducer is aimed so as to direct 

the beam towards the test material interface at an angle. 

When a sound beam is incident to an interface at an angle other than 90°, as 

illustrated in Figure 4.1, a phenomenon called mode conversion occurs. In addition 
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to the simple reflected beam, a portion of the incident beams energy converts at the 

interface to a beam with a different mode of vibration, and reflects at an angle other 

than the angle of incidence (or reflection). 

When sound refracts, there is mode conversion, too. Thus, there is an additional 

refracted beam which is a mode conversion of the incident beam. 

Incident Beam : Mode converted beam 
I 
I 

Reflected beam 

Refracted longitudinal beam 
Refracted shear beam 

Figure 4.1: Mode conversion of sound waves 

As the angle of the incident beam increases, the angle of the refracted beams 

also increases. At a critical angle, the longitudinal refracted beams is refracted 90°, 

and is in effect, fully reflected within the first material. This is called as the first 

critical angle and only the shear component of the refracted beam is transmitted 

to the second material as illustrated in Figure 4.2. The second critical angle is the 
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incident angle that causes the refracted shear beam to be refracted 90°. For example, 

with a plastic wedge producing angle beams in carbon steel, the first critical angle is 

27.2° and the second critical angle is 55.8°. 

In the experiments conducted, the data has been collected from stainless steel 

pipes, using plastic wedges, so that the angle of refraction is 43°. The shear waves 

dominate in this particular testing setup. 

Relevant Issues with Angle Beam Mode of Scanning 

Three of the most important issues which distinguish and complicate angle-beam 

SAFT from normal-beam SAFT are discussed below. 

1. Multiple Sound paths 

In case of angle-beam pulse-echo mode of inspection, with finite depth of ma­

terial, multiple sound paths can contribute to the processed image. 

There are three paths that can contribute reflection echoes in the data. These 

paths are shown in Figure 4.3. One needs to be aware of the physics of the sit­

uation to avoid misinterpreting images or to use the multiple path information 

to build greater accuracy into the final image. In Figure 4.3, the material is of 

thickness T, and the defect of interest is located at x = 0 and at a depth D in 

the material [16] 

• The first path is the direct back-scattered path (P1 - P1 ) from the sound 

field entrance into the part to the defect and back to the receiver. Analysis 

shows that the data along this path will be deterministic, that is, one 

unique object depth corresponds to one unique hyperbolic curve. This 
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Incident Beam Mode converted beam 
I 

Reflected beam 

Refracted shear beam 

Figure 4.2: Angle of incidence is greater than the first critical angle 

curve is defined by the equation 

F(x, D) = Jn2 + x2 ( 4.1) 

• The second sound path is ( P2 - P3 - P1 ) from the sound field entrance 

point of the part, to the back surface, to the defect and finally to the 

receiver. The sound path is the sum of the length of the ray paths P 1 , P 2 

and P3 . The equation for the corresponding curve is 

F(x, D, T) = j(D2 + X 2 ) + j(2T - D) 2 + X 2 (4.2) 

This path is identical to the reverse sequence of (P1 - P3 - P2). This path 

contributes a very large return echo since it relies on the strong forward-
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Figure 4.2: Angle of incidence is greater than the first critical angle 
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Figure 4.3: Multiple sound paths in angle-beam pitch-catch mode of ultrasonic test­
mg 

scattered signal rather than the weaker-back scattered signal [16]. 

• The third sound path to be considered is from the sound field entrance 

point on the part , to the back surface, to the defect , back-scatter from the 

defect to the back surface and return to the receiver or ( P2 - P3 - P3 - P2 ). 

This path forms the mirror image of the defect and back relies on the 

usually weak back scattered signal. The equation for the corresponding 

curve is 

F(x , D, T ) = V(2T - D)2 + X 2 (4.3) 
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Depending on the defect type, orientation and other characteristic, one of the 

three paths will dominate the recorded experimental data. The general-purpose 

SAFT algorithms is capable of constructing all three of the propagation paths 

for angle-beam data. 

2. Periodicity 

An interesting phenomenon involving angle-beam scanning is that the same flaw 

is seen from two transducer position that are a full V-apart. This is illustrated 

in Figure 4.4. A half-V corresponds to the time required for the beam to travel 

an entire depth of the specimen. A full-Vis the summation of two half Vs. This 

periodicity of the flaw in the A-scan records occurs since, during the angular 

travel of the beam, it gets reflected from the front and the back wall surfaces. 

Thus when the transducer is at position T1 , the beam path to the defect is 

P1 - d - P1 . When the transducer is at T2 , which one full-V away from Ti, the 

sound path is P 3 - P2 - P1 - d - P1 - P2 - P3 . Note that for T2, because of 

the longer path, the reflection in the A-scan occurs later. Also, the amplitude 

of reflection from the defect in case of T2 is smaller, because of the higher 

attenuation due to the longer path. 

A typical B-scan in which this periodicity is exhibited is shown in the Figure 4.5. 

The A-scans have been plotted vertically. As can be seen, the same defect is 

seen multiply in the upper left hand side and the lower right hand side. The 

difference in their time of flights and amplitudes can also be seen. 

3. Ellipsoidal Incidence 

An additional complication encountered while performing angle-beam SAFT is 
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Figure 4.4: Periodic imaging of the same defect 

that the metal-path traveled from all points on the face of the transducer is 

not the same. Thus the emerging beam is more in the shape of an ellipsoid, a 

phenomenon not encountered in normal SAFT. 

The angle-beam SAFT procedure has to account for all these issues and compli­

cations. The corresponding angle-beam SAFT algorithm developed, is discussed in 

the following section. 

Algorithm for Angle-Beam SAFT 

The following algorithm outlines the major steps for performing angle-beam 

SAFT for a single depth position. It can be iterated over multiple depth positions to 
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Figure 4.5: B-scan with periodic imaging of a crack 

get the SAFT processing on multiple positions. 

120 

1. Input SAFT processing parameters: depth d, aperture a, thickness T, velocity 

of sound in specimen rJ , angle of incidence (), data sampling frequency S, total 

number of A-scans numA, and number of data points numD in each A-scan. 

The parameters can be better recognized in Figure 4.6. 

2. Read the set of A-scans constituting the B-scans b-scans and the corresponding 

transducer positions pos . Initialize the result matrix sa f t to 0. 
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Figure 4.6: Test specimen geometry for the angle beam SAFT algorithm 

3. Compute the lateral distance xdist and metal path mp to the depth. 

xdist = d tan e ( 4.4) 

mp = 2J d2 + xdist2 ( 4.5) 

The factor of 2 is included to take care of both the forward and backward path 

of the beam. 

4. For i = 1: numA 

For j =-a: a 

Calculate the metal path mpj(j) to the point P on the path 

of center of aperture ( i ) from the neighboring point ( i + j ) 

as shown in Figure 4. 7. 
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Figure 4.7: Metal path calculation geometry 

mpj(j) = 2J(pos(i + j) - pos(i) + xdist) 2 + d2 (4.6) 

Calculate the time shift ts(j) to be incorporated in the 

A-scan at point (i + j) 

ts(j) = mpj (j) - mp * S 
-a 

Shift the Ph scan and add to the result . 

For k = 1 : numD 

(4.7) 

Saft(i, k) = Saft(i , k) + bscan(i + j, k + ts(j)) (4.8) 
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end 

end 

end 

5. Average the result over the aperture 

Saft(i, k) = Saft(i, k) 
(2*a+l) 

( 4.9) 

This algorithm was implemented on a number of experimental B-scan images, 

and the results are presented in the following chapter. 

Mapping between Image Domain and Physical Domain 

The final goal of any image processing technique is to represent the result in a 

manner so that it is easy to interpret. It requires a fair amount of skill and practice to 

be able to map a point from an A-scan, to its corresponding location in the geometry 

of the specimen being inspected. Hence, mapping techniques, which will translate a 

point in an A-scan at a particular transducer position, to its corresponding position 

in the specimen, will greatly enhance visual interpretation. Preliminary mapping 

techniques to translate a point in an A-scan to its location in the geometry was done. 

The reverse mapping from the test geometry to the location in the A-scan was also 

developed. Both these techniques are described in the following sub-sections. 
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Mapping from image domain to physical domain 

Mapping from the image domain to the physical domain implies that given the 

axial (a), and the circumferential (c) position of the transducer, along with a specific 

time of flight (to!), it is required to calculate the corresponding point ( x, y, z ), in the 

geometry of the test specimen. If v is the velocity of sound in the medium, then the 

metal path mp can be calculated as 

mp=v*tof/ 2 (4.10) 

This can better understood by referring to Figure 4.8 The axial, x, circumferential, 

a 

·theta z 
d J. 

Figure 4.8: Mapping from image domain to physical domain 
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y, and depth, z, locati0"' of the point in the geometry can be calculated as 

x = a - mp* sinB 

y=c 

z = (mp* cosB)modulo( d) 

(4.11 ) 

( 4.12) 

( 4.13) 

Here B is the angle of incidence of the beam into the specimen, d is the thickness of 

the test specimen, and 

Mapping from physical domain to the image domain 

Mapping from the physical to the image domain implies that, given the axial 

( x), circumferential (y), and depth ( z) location of a point in the specimen geometry, 

it is required to calculate the corresponding positions of the transducer (a, c), along 

with the time of flight tof , of the point in the A-scan record. In this case, as shown 

in the Figure 4.9, for each point in the geometry, there are two primary positions 

(Tl and T2) that need to be considered. One of them (Tl) falls in the first half-V 

(al, cl, to fl ), and the next (T2) in the second half-V (a2, c2, tof2). In the first half­

V, the location of the transducer and the corresponding time of flight is given by the 

following equations. 

al = x + z * tane 

cl= y 

tofl = 2 * z/(cosB * v) 

In the second half-V, the equations for the calculations are as follows. 

a2 = x + (d - z)/tan(n"/2 - B) + d * tanB 

( 4.14) 

( 4.15) 

( 4.16) 

( 4.17) 
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Figure 4.9: Mapping from physical domain to image domain 

c2 = y 

tof2 = 2 * (a2 - x)/(sin() * v) 

(4.18) 

( 4.19) 

Thus, using these equations, it is easy to map from one domain to another, thus 

enhancing visualization, and understanding. Following this, the next development 

is to use these functions to map the entire image information into an appropriate 

3-dimensional representation of the geometry being imaged, along with the flaw rep-

resentation. 
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CHAPTER 5. RESULTS AND DISCUSSIONS 

The algorithm for performing angle-beam SAFT on B-scan images and B'-scan 

image was discussed in the previous chapter. In this chapter we present the results 

of implementing this algorithm on B-scan, B'-scans at single depths and multiple 

depths. This will be followed by the discussion of the results and finally the future 

work that can be carried out in this field. 

Experimental Setup 

The data for the SAFT system was obtained through the Electric Power Research 

Institute. In this section, a brief summary of the entire data collection scheme is given. 

In a typical setup, the UT process starts with an operator entering the reactor with 

his radiation-proof gear and the testing tools. Since most of the defects occur close 

to the weld, he uses normal incidence and angle beam incidence methods to check 

for reflections in the received echoes in those regions. On observing the reflection 

from a possible flaw, he moves the transducer in the neighboring regions to test if 

the reflection is from a defect or a counter-bore or the root of the weld. 

All the above features produce distinct signatures in their corresponding reflec­

tions. For example, the reflections from a root weld are usually of a longer duration, 

whereas the reflection from the counterbore and the defect are much sharper. Again, 
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to distinguish between a counterbore and a crack, the operator moves the probe par­

allel to the counterbore. Since counterbore occurs throughout the pipe, reflections 

from counterbore will be present for all transducer positions along the circumference, 

whereas a crack can be characterized as a sharp reflection in a restricted neighbor-

hood. 

Following the detection of the flaw, the location and sizing of the flaw are done 

using the velocity of the wave, the thickness of the sample and the time of flight 

corresponding to the reflection. 

In case of the data used for our experiments, standard 43° refracted beam was 

employed, with the same plastic wedges. All the pipes were stainless steel with a 

thickness of 0.69" and 12" outer diameters. The pipes were scanned using transducer 

probes centered at 1, 2.25, and 5 MHz. The analog received data was digitized 

using 8-bit analog-to-digital converter. The reflected data was collected for 71.92µs 

for each of the transducer positions. This analog data was digitized at 25 Mega-

samples/second to give A-scans of length 1798 samples each. A typical scan area was 

3" X 10" with resolution of 0.025" (which is less than a quarter of a wavelength with 

velocity {) = 0.11 inches/ µs and frequency f = 2.251\1 H z) and 0.1" along the axis 

and circumference of the pipe, respectively. This led to individual data files which 

contains 

samples 

3 10 
--X-Xl798 
0.025 0.1 

Thus each of the files was close to 22 MBytes in size. 
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Results 

This section is divided into three parts, to present results of: 

1. focusing at single depth for B-scan images 

2. focusing at single depth for B'-scan images 

3. focusing at multiple depths for B'-scan images 

In all the sections, the test specimen is a stainless steel welded pipe of outer diameter 

12" and thickness 0.69" . The ultrasonic data was collected by a scanning a 3" (axial) 

by 10" (circumferential) region around the weld using angle-beam, pulse-echo tech­

nique. The center, frequency of the ultrasonic data was 2.25 MHz and the angle of 

inspection was 43°. A plastic wedge was used to achieve this angle. The scanning 

was done in a raster format along the axial direction. The axial resolution is 0.025" 

and circumferential resolution is 0.1". The reflected analog data was collected for 

71.92 µ s for each of the t ransducer positions. This was then 8-bit sampled to give 

digital data of length 1798 for each of the A-scans. A wedge delay corresponding to 

6.4 µs ( or 16 samples) has to be compensated for, in each of the A-scans. 

The pipe has a crack very close to the root of the weld. The circumferential span 

of t he crack is 1.618" and depth is 0. 33". The geometry of the pipe and the crack 

being imaged is illustrated in Figure 5.1 

B -scan 

As has been explained in an earlier section, B-scan is a collection of A-scans. 

In this case, the B-scan is in the axial direction, i.e. it has the higher resolution. A 

typical B-scan imaging is illustrated in Figure 5.2. 
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I I 

0.12" 
Figure 5.1: Experimental pipe geometry 

0.69" 

Pipe 2 

The B-scan of the test specimen along a particular circumferential position is 

shown in Figure 5.3. As can be seen, there is a high saturation region in the initial 

part. This corresponds to the "big bang" or the reflection from the front wall-wedge 

interface. 

As the transducer, moves away from the weld, during the B-scan imaging, the 

defect and the weld are seen at later positions in time or the time of flight (TOF) . 

Note that, because of the periodicity in angle-beam imaging the same reflections 

are periodically repeated at a large TOF for the transducer position further away 

from this weld. 

The transducer raster scans in the same directions as in B-scan imaging. As a 
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Scanning direction 

Weld-crown 
< · · ·· · ··· <····· ··· 

Weld-root 
Axial direction 

Figure 5.2: B-scan imaging 

result, the higher resolution of 0.025" is in this direction. Consequently, SAFT can 

be applied over a larger aperture, since because of the physical proximity between 

the transducer locations for the B-scan, the same reflectors can be seen over a larger 

windows of A-scans. Figure 5.4 shows the result of SAFT performed on the B-scan 

in Figure 5.3. The aperture chosen was 10 and the depth of the SAFT corresponds 

to the third leg. 

The third leg was chosen, because of two reasons: 

1. Due to the high gain of the receiving amplifier in the scanning system, to be 

able to detect the smallest flaws , the data is highly saturated in the first leg of 

the beam and hence this leg could not be used. 
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Figure 5.3: A B-scan image in which the defect can be seen clearly 

2. There is a larger beam spread in the third leg and hence contributions from 

the reflectors occur over a larger area, thus improving the ability of the SAFT 

algorithms. 

Another B-scan image in which the defect or the weld are not seen clearly is 

illustrated in the Figure 5.5. The result of performing SAFT with an aperture size 

of 10 is illustrated in Figure 5.6. 

As can be seen, there is clearly an improvement in the resultant image after 

performing the SAFT, as the fl.aw and the weld-reflections can be made out more 
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Figure 5.4: After SAFT implementation on the B-scan 

The B-scan imaging is a collection of consecutive A-scans along the axial direc­

tion. The B'-scan, on the other hand, is a collection of consecutive A-scans along 

the circumferential direction. This is illustrated the Figure 5. 7. Since the transducer 

moves parallel to the weld and the crack in the corresponding B '-scan image, they 

are "seen" at the same time of flight (TOF). 
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Figure 5.5: A B-scan image in which the defect cannot be seen clearly 

Note that the periodicity of the reflection is not observed in a B '-scan imaging, 

since the transducer is being moved parallel to the weld. 

Since the transducer scans along the lower resolution axis, SAFT is performed 

over a small aperture size as compared to the B-scan case. Figure 5.8 shows a B '-scan 

from the pipe, along a certain axial position. 

Due to the reasons explained in the B-scan imaging the SAFT algorithm has 

been implemented for the third leg of the beam. The B'-scan has been chosen such 

that the defect lies in the third leg. The aperture size chosen is 3 because of the 
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Figure 5.6: After SAFT implementation on the B-scan 

lower resolution along the circumferential direction. Figure 5.9 shows the result of 

the SAFT algorithm. 

Figure 5.10 shows a comparatively degraded B'-scan image. Figure 5.11 illus­

trates SAFT with aperture size 3 

As can be seen, there is an improvement in the detection ability after performing 

the B'-scan SAFT. 
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Figure 5.7: B'-scan imaging technique 

Multi depth B'-scan 

During the multidepth implementation of the SAFT algorithm, the B'-scan im­

age of Figure 5.12 was selected. The SAFT was then performed at 6 uniformly spaced 

depths in the third leg. The resultant images were then combined to give Figure 5.13. 

As can be seen, in Figure5.13 the flaw profile comes up very clearly, due to focusing 

at more than one depths. Thus, performing multidepth SAFT is definitely a better 

technique than single depth focusing. 
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Figure 5.8: A B'-scan image in which the defect can be seen clearly 

Discussion 

As can be seen from the results in the previous sections, SAFT is indeed a 

valuable tool, to enhance ultrasonic testing techniques, to take care of the complex 

scattering phenomenon. 

The depth of SAFT requires to be known apriori. Also the aperture size needs 

to be directly related to the scanning resolution in the particular direction. If the 

aperture size chosen is too large, besides the additional computational complexity, 

there might be severe degradation of the resultant image. This is because the im-
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Figure 5.9: After SAFT implementation on the B'-scan 

plementation would average over A-scans in which there is no contribution from the 

defect. This definitely needs to be avoided. 

B'-scan imaging is better than B-scan imaging in this particular research. This is 

because, the orientation of the cracks makes the B'-scan more perceptible, visually, as 

it is easier to distinguish the weld and crack regions more clearly in the B'-scan image. 

However, in this research, because of the higher resolution in the B-scan direction, 

there is a larger area (or transducer positions) to which a reflector contributes. 

Multidepth-focusing is a good option in this case, since the crack can be at any 
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Figure 5.10: A B'-scan image in which the defect cannot be seen clearly 

depth in the specimen. By attempting to focus at multiple depths, the amount of 

apriori information required is reduced. Secondly, flaw profiles not envisaged, might 

be seen in the same B'-scan after processing it via the SAFT algorithm. 

The work reported in this thesis on the application of SAFT to angle-beam 

pulse-echo ultrasonic testing technique clearly shows that this methodology is quite 

powerful at achieving an improved resolution. 
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Figure 5.11: After SAFT implementation on the B'-scan 

Conclusion 

Angle-beam pulse echo technique is the dominant mode of data collection in the 

nuclear industry. The data obtained, however, is very noisy, and signal processing 

techniques are needed to enhance the signal-to-noise ratio of this data, to improve 

operator interpretation. Focus has been placed on SAFT as a technique to perform 

this noise reduction and resolution improvement. SAFT is a valuable tool, for ul­

trasonic NDE because of the complex scattering phenomenon in the weld material. 

Most of the research done earlier, has been in the field of normal SAFT. However, 
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Figure 5.12: A B'-scan image in which the defect cannot be seen clearly 

100 

the algorithm for normal SAFT has to be enhanced, to incorporate issues unique 

to the angle-beam mode of data collection. These include multiple sound paths of 

the ultrasonic beam, and spatial periodicity of the defects. The angle-beam SAFT 

algorithm was developed in this research. 

Flaw location is very important in the nondestructive evaluation of a specimen. 

However, it is also very difficult. In this research, algorithms have been developed to 

aid in manual and computer flaw location. 

From the results of performing SAFT on various B-scan and B'-scan images, it 
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Figure 5.13: After implementing SAFT at 6 uniformly spaced depths in the third 
leg of the B '-scan 

can be concluded that SAFT is indeed a valuable tool for improvement of ultrasonic 

images of nuclear tubings. 

Future Work 

Further development and refinement of the SAFT process is desirable, in order 

to consider all possible factors. Proposals for additional studies may include the 

following avenues: 
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1. The algorithm should be developed independent of the apriori information re­

quired for the SAFT depth calculation. This could be done using a neural 

network approach, which produces the data set to detect possible defects. The 

neural network could inform the SAFT algorithm about the approximate loca­

tion of the defect. 

2. The optimum aperture size for a given scanning geometry could be calculated 

automatically. This can be done using the basic laws of physics to calculate the 

beam spread in the test specimen using the sound wavelength, the ultrasonic 

impedance of the test material and the scanning resolution in the particular 

direction. 

3. As a final suggestion, to optimize the inherent capabilities of SAFT, the pos­

sible expansion to real-time should be looked into, as a way to speed up the 

computational time. Due to the fact that the SAFT-algorithm executes its 

computation A-scan by A-scan, and the process is repeated for each of the 

A-scan, all individual operat1 ns can be parallelized via the use of an array 

processor. This may reduce the CPU-time by a large factor, which may be a 

critical requirement in an extensive testing environment. 
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